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Stokes flow of a viscous fluid in a cylindrical container driven by time-periodic forcing,
either at the boundary or through oscillation of the cylinder about an axis parallel to
its generators, is considered. The behaviour is governed by a dimensionless frequency
parameter η and by the geometry of the cylinder cross-section. Various cross-sections
(square, rhombus, and sector of a circle) are first treated by either finite-difference
or analytic techniques and typical transitions of streamline topology during flow
reversals are identified. Attention is then focused on the asymptotic behaviour near
any sharp corner on the boundary. For small η, a regular perturbation expansion
reveals the manner in which local flow reversal proceeds during each half-cycle of the
flow. The behaviour depends on the corner angle, and different regimes are identified
for both types of forcing. For example, for an oscillating square domain, eddies grow
symmetrically from each corner and participate in the subsequent flow reversal in the
interior. For large η, the corner eddies merge into Stokes-type boundary layers which
drive the interior flow-reversal process. In general, the local corner analysis provides
a key to an understanding of the global flow evolution.

1. Introduction
Stokes flow of an incompressible fluid in a finite domain D is generally thought

to be ‘quasi-static’, i.e. instantaneously determined throughout D by the velocity
distribution on its boundary ∂D. For such a flow, if the boundary is instantaneously
at rest, then the fluid is everywhere at rest irrespective of the previous history of the
motion. Thus, for example, if a tangential motion that is sinusoidal in time is imposed
on part or all of ∂D, then the interior flow will have a constant streamline pattern, the
intensity varying sinusoidally at each point, a reversal of the flow direction occurring
at each instant when the boundary is momentarily at rest.

This quasi-static description is clearly inadequate, since in all practical circumstances
for a fluid of finite viscosity, it takes a finite time for vorticity to diffuse from the
boundary to the fluid interior. In particular, if the boundary is brought to rest at any
instant, a residual motion remains within the fluid at that instant. In a time-periodic
flow driven by sinusoidal boundary motion, this residual motion at the instants when
the boundary is at rest provides the key to understanding how the above flow reversals
occur in practice.

The situation is amenable to analysis, which turns out to be particularly revealing,
when D has one or more sharp corners on its boundary, and the flow is two-
dimensional. The generic steady Stokes flow in the neighbourhood of such corners
has been long understood (Moffatt 1964): if the angle of the corner is less than a
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critical value (approximately 146◦), and the flow is driven by an input remote from the
corner, then the flow is characterized by a sequence of self-similar eddies of alternating
sense (clockwise and anticlockwise) and rapidly decreasing intensity as the corner is
approached. If the remote input (whether by boundary motion or otherwise) is now
supposed to be sinusoidal in time, then the quasi-static description would imply an
instantaneous and simultaneous reversal of all the eddies in this sequence at each mo-
ment of input reversal. This is scarcely credible, and a more realistic description must
be sought through consideration of the residual flow effect. We shall find that this con-
sideration yields a time-periodic flow in which topological transitions occur in such a
way as to allow for flow reversals without ever passing through a state of complete rest.

We shall focus on two prototypical situations. The first (the ‘oscillating lid problem’)
is that for which the flow is driven by an oscillatory tangential motion of part of the
boundary (which can be thought of as a ‘sleeve’ or a ‘lid’ depending on circumstances);
this is the situation studied by Shankar, Kidambi & Hariharan (2003) for the case of
a rectangular cavity with oscillating lid, in which the importance of the ‘residual flow’
phenomenon described above was recognized. The second (the ‘oscillating cylinder
problem’) is that in which the cylinder D is subjected to torsional oscillations about
an axis parallel to its generators; in this case, it is the flow relative to the cylinder (i.e.
the departure from a rigid-body motion) that is of interest. It is of historical interest
to note that this type of problem was first conceived by Stokes (1843) in a study
of the potential flow inside a rectangular parallelepiped, subjected to an arbitrary
translation and rotation. We shall refer further to this paper in § 5 below.

These two prototype problems may both be approached within a common
framework, as described in § 2 below, although significant differences will emerge
later. For given geometry, and in the limit of low Reynolds number, the only
surviving parameter is a dimensionless frequency parameter η. In § 3, we discuss
general characteristics of the flow reversal and show examples of the process for
various geometries of the boundary. In § § 4 and 5, we seek to understand the origin
of these flow reversals through consideration of the local behaviour near any sharp
corner. For low η, this may be treated by a regular perturbation expansion (§ 4), while
for large η (§ 5) a matching between ‘core flow’ and a Stokes-type boundary layer is
required. In each case, the analysis reveals the essential flow-reversal mechanisms.†
Finally, in the Appendix, we present details of the analytical method as applied in § 3
for the oscillating cylinder problem based on truncated eigenfunction expansions.

2. Mathematical formulation
Consider first the two-dimensional, unsteady flow of a viscous incompressible fluid

contained in a cylinder of cross-section D which is subjected to torsional oscillatory
motion with angular velocity Ω =Ω(t)k about an axis parallel to its generators. We
shall refer to this as the ‘oscillating-cylinder problem’. The cross-section D is arbitrary;
it may have one or more sharp corners on its boundary, and it need not be simply
connected. In a (non-inertial) frame of reference fixed relative to the cylinder, the flow
is governed by the Navier–Stokes equation in the form

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∇2u − 2Ω ∧ u − Ω ∧ (Ω ∧ r) − Ω̇ ∧ r,

∇ · u = 0,


 (2.1)

† These are most vividly exposed by computer animations, which are available as a supplement
to the online version of this paper.
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with the no-slip boundary condition u = 0 on ∂D. The terms −2Ω ∧ u − Ω ∧ (Ω ∧ r)
are (for two-dimensional flow) irrotational and may be absorbed in the pressure
term; the Poincaré force −Ω̇ ∧ r is however rotational, and drives a flow relative to
the cylinder. With streamfunction ψ(x, y, t) such that u = ∂ψ/∂y, v = −∂ψ/∂x, the
vorticity is ωωω = − ∇2ψ k, and ψ satisfies

∂∇2ψ

∂t
+

∂(∇2ψ, ψ)

∂(x, y)
− ν∇4ψ = 2Ω̇, ψ =

∂ψ

∂n
= 0 on ∂D, (2.2)

where the Poincaré term 2Ω̇ evidently provides a uniform rate of production of
vorticity within the domain.

Let L be the characteristic scale of the cross-section D and let ω̂, Ω̂ be respectively
the characteristic frequency and amplitude of the torsional oscillations. If we then
non-dimensionalize lengths with L, time with ω̂−1, and velocities with Û ( = 2Ω̂L),
(2.2) takes the non-dimensional form

η
∂∇2ψ

∂t
+ Re

∂(∇2ψ, ψ)

∂(x, y)
− ∇4ψ = η Ω̇, ψ =

∂ψ

∂n
= 0 on ∂D, (2.3)

where Re = ÛL/ν is the Reynolds number and η = ω̂L2/ν. These two parameters can
be varied independently by changing Û and ω̂.

A related problem that we shall refer to as the ‘oscillating-lid problem’ concerns the
flow inside the cylindrical domain D generated by a prescribed oscillatory tangential
velocity distribution U on the boundary with some characteristic frequency ω̂ and
amplitude Û . The Navier–Stokes equation governing this flow can be written

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∇2u,

∇ · u = 0,

u · n = 0, u · t = U(s, t) on ∂D,




(2.4)

where n, t are the unit normal and tangent vectors on ∂D; s is a variable along the
boundary (e.g. arc-length). We may again non-dimensionalize using L, ω̂−1, and Û as
scales of length, time and velocity, and the problem (2.4) reduces to

η
∂∇2ψ

∂t
+ Re

∂(∇2ψ, ψ)

∂(x, y)
− ∇4ψ = 0, ψ = 0,

∂ψ

∂n
= U(s, t) on ∂D. (2.5)

The governing equation and boundary conditions for both prototype problems (2.5)
and (2.3) can be compacted in the form

η
∂∇2ψ

∂t
+ Re

∂(∇2ψ, ψ)

∂(x, y)
− ∇4ψ = Λ η Ω̇(t),

ψ = 0, ∂ψ/∂n = (1 − Λ)U(s, t) on ∂D,


 (2.6)

where Λ = 1 for the oscillating-cylinder problem and Λ = 0 for the oscillating-lid
problem.

We now adopt the conventional Stokes approximation Re � 1, which allows us
to drop the nonlinear convective acceleration term in (2.6). We further suppose that
Re � η so that it is consistent to retain the local acceleration term η∂∇2ψ/∂t , which
plays an important part in the subsequent analysis. These two conditions may be
combined in the form

Û/ω̂ � L � ν/Û, (2.7)
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and evidently

Û 2/νω̂ = Re(Re/η) � 1. (2.8)

Having linearized the problem, we may analyse the flow due to a single Fourier mode
of the forcing. In complex notation, with real parts understood, we set Ω = eit in the
oscillating-cylinder problem, or U = u(s)eit in the oscillating-lid problem, and we seek
solutions of the form ψ = ψ̂(x, y) eit†. Thus, based on (2.6), ψ̂(x, y) satisfies

∇2ψ̂ − (iη)−1∇4ψ̂ = Λ,

ψ = 0, ∂ψ/∂n = (1 − Λ)u(s) on ∂D.

}
(2.9)

We note that Shankar et al. (2003) have studied this system for the oscillating-lid
problem (Λ= 0) in a rectangular geometry. It is crucial to note that, as recognized
by Shankar et al., the amplitude ψ̂ = ψ̂r + iψ̂ i is in general complex so that the final
time-dependent streamfunction has the general form

Ψ (x, y, t) = Re[ψ̂(x, y) eit ] = ψ̂r cos t − ψ̂ i sin t. (2.10)

Hence, as long as ψ̂ is complex and ψ̂r �= cψ̂i with c real, the streamfunction Ψ given
by (2.10) represents an oscillatory flow which is not quasi-steady. This manifestation
of fluid inertia is a direct consequence of retaining the unsteady term in the Navier–
Stokes equation whereby the flow adjusts itself to the oscillations of the forcing in
a non-trivial fashion. In the following sections, we shall focus on the nature of the
periodic flow reversals, first from a global, then from a local perspective.

3. Global aspects of flow reversal in a closed domain
In the two situations specified in the previous section (oscillating cylinder and

oscillating lid), the flow reversal is initiated at the boundary ∂D and subsequently
proceeds inwards. In order to understand this mechanism, we first focus on topological
changes in the evolving flow structure which occur in the interior and in the ‘low-
η’ regime (the description in this section is qualitatively correct up to η ∼ 200;
the ‘high-η’ regime, when oscillatory boundary layers play an important part in the
flow reversal, is discussed in § 5). In subsequent sections, we shall analyse different
mechanisms for the onset of flow reversal based on local solutions near sharp corners
on the boundary. It turns out that the final stage of the flow reversal, which takes
place in the interior, is qualitatively independent of the actual onset mechanism and
is determined primarily by symmetries of the domain.

The problem of finding an analytical solution of the amplitude equation (2.9) in an
arbitrary domain is prohibitive. It is however possible to obtain an approximate
analytical solution to (2.9) in a rectangular geometry based on the so-called
superposition method (see the Appendix). This yields an exact solution in the form of
an infinite series whose coefficients satisfy an infinite system of algebraic equations.
Here we simply present some results obtained by this method for a square domain.
We then present a number of numerical solutions of (2.9), obtained by standard
finite-difference techniques, for a variety of other geometries, and we indicate certain
common characteristics of the flow reversal process which are independent of the
domain geometry.

† By doing so, we obviously exclude from consideration any transient phenomena associated
with the initial stage of the evolution if the fluid is accelerated from rest.
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(a) (b) (c)

(d) (e) ( f )

Figure 1. Flow reversal in an oscillating square domain in the low-η regime for η =100; for
smaller values of η the reversal process is virtually the same but occurs on a shorter time
scale. (High-η reversal is shown in figure 14.) Snapshots of a sequence of streamline patterns
in the non-inertial frame oscillating with the cylinder with (non-dimensional) angular velocity
Ω(t) = cos t: (a) t = 0, (b) t = 0.61 – primary corner eddies, rotating in opposite sense to the
central eddy, grow inwards, (c) t = 0.94 – dividing streamlines detach from the walls and create
a heteroclinic connection, (d) t = 1.38, (e) t = 1.41 – the heteroclinic connection shrinks and
eventually annihilates the central eddy, (f ) t = π + 0.55 – the next flow reversal progresses in
a similar way.

3.1. Flow reversal in a square

The process of flow reversal inside an oscillating cylinder of square cross-section is
shown in figure 1 for η = 100. The sequence of snapshots captures the topological
evolution of the streamline pattern during a flow reversal. A reversal starts roughly
when the angular velocity of the oscillating cylinder (Ω = cos t) is extremal, i.e.
at t = tn = nπ, when the forcing term in (2.9) vanishes. Four corner eddies, which
counter-rotate relative to the central eddy, emerge from the corners and progress
diagonally towards the centre. The points of attachment of the dividing streamlines
move along the boundary and eventually merge to form a heteroclinic streamline
connecting four saddle points. This heteroclinic structure shrinks in time and the
central eddy is eventually annihilated in a heteroclinic bifurcation (with four-fold
symmetry, corresponding to the symmetry of the domain) at the centre. This process
is repeated periodically. As will be clarified in § 4 below, the time scale of this flow
reversal decreases with η and the whole process occurs within a short time interval
centred on each tn = nπ when η is small. In the limit η = 0, the process becomes
quasi-steady and the reversals are instantaneous.

As mentioned previously, flow reversal inside a rectangular cavity driven by an
oscillating lid has been described by Shankar et al. (2003). We note that the
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Figure 2. Flow reversal inside an oscillating cylinder with rhomboidal cross-section in the
low-η regime for η = 100 (compare with figures 1, 3). Sequence of instantaneous streamline
patterns of Ψ shown in the non-inertial frame oscillating with the cylinder for (a) t = −0.0065,
(b) t = 0.47, (c) t = 0.72, (d) t = π − 0.0065. As for the square geometry, a heteroclinic connection
of four saddles annihilates the counter-rotating central eddy. Note that pairs of side wall eddies
appear in the acute-angle corners and that eddies in the obtuse-angle corners appear much
later. See the following sections for explanation of this phenomenon.

superposition method described in the Appendix provides an alternative method
of deriving an approximate solution to this problem, and we have found this to be in
broad confirmation of Shankar et al.’s results.

3.2. Flow reversal in other geometries

We present here some further examples of the process of flow reversal based on
numerical solution of (2.9) in non-rectangular domains, using a second-order finite-
difference scheme. As before, the flow evolution is obtained by substituting the
computed amplitude function ψ̂ into Ψ , given by (2.10); and figures 2–4 present
sequences of streamline patterns Ψ = const.

Figure 2 shows the time-periodic evolution in a rhomboidal domain of interior
angles 2α1 = 45◦, 2α2 = 135◦, with η = 100. Note that at the onset of the flow reversal,
in contrast to the case of the square domain, pairs of sidewall eddies now emerge from
the walls in the acute-angle corners and there are at first no visible eddies present in
the obtuse-angle corners. The sidewall pairs of eddies, which counter-rotate relative
to the central eddy, later merge into expanding corner eddies and the two dividing
streamlines created in the merger process start moving in opposite directions. The
dividing streamline which moves into the interior of the domain is later involved in
a heteroclinic connection of four saddle points. The final stage of the flow reversal is
qualitatively similar to that for the square domain, the heteroclinic structure shrinking
to annihilate the original central eddy. It is evident again that the flow reversal process
is initiated by the emergence of the corner eddies; this process will be examined by
detailed local analysis in § 4.

Consider now two examples of evolution inside a sector of a circle of angle
2α =60◦, again with η = 100. Figure 3 shows the oscillating-cylinder case when the
whole contour is subjected to torsional oscillations. At the onset of the flow reversal,
a pair of sidewall eddies again emerges from the walls in the acute-angle corner and
two simple eddies emerge from the remaining corners. The sidewall eddies eventually
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Figure 3. Oscillating-cylinder problem: flow reversal inside sector of a circle (60◦) in the
low-η regime for η =100. Sequence of instantaneous streamline patterns of the time-periodic
streamfunction Ψ (2.10) shown in the non-inertial frame oscillating with the cylinder for
(a) t = −0.086, (b) t = −0.08, (c) t = 0.35, (d) t = 0.69, (e) t = 0.9, (f ) π+0.35. The mechanism
is similar to that in the square (see figure 1) although this time one heteroclinic connection is
created (involving two saddles) and one homoclinic connection (see (e)).

merge into a single expanding corner eddy and pairs of separation points of the
dividing streamlines move towards each other along the boundary. As in the previous
cases, the corner eddies counter-rotate relative to the central eddy and occupy an
increasingly large area of the domain. Due to a lesser degree of symmetry, there
appears in this case a heteroclinic connection of just two saddle points, and a
homoclinic streamline whose saddle point moves along the bisector of the angle.
The final stage of the flow reversal involves a sequence of global bifurcations, the
homoclinic connection playing a dominant role; but as in the previous cases, the
net effect is that the whole structure shrinks towards the centre in such a way as to
annihilate the original central eddy.

Figure 4 shows the oscillating-lid case, when the curved part of the boundary (the
‘lid’) is rotated about the centre with sinusoidal angular velocity. The flow reversal
begins when the lid velocity is about to reverse. Two eddies, counter-rotating relative
to the central eddy, emerge from the corners adjacent to the lid (figure 4c) and later
merge into a single expanding eddy located under the lid (figure 4d). At approximately
the same time, the corner eddy opposite the moving lid expands inwards, and when
the separation points meet on the boundary a heteroclinic connection of two saddle
points is formed. The original central eddy eventually disappears in a heteroclinic
bifurcation at the centre.

Based on these examples, we may conjecture that the final stage of the flow
reversal process is quite generally realized by a sequence of global bifurcations in
the instantaneous streamline pattern of the flow. In the process, the central eddy
disappears in a global bifurcation involving one or more saddles created when the
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Figure 4. Oscillating-lid problem: flow reversal inside sector of a circle (60◦) for η =100.
Sequence of instantaneous streamline patterns of the time-periodic streamfunction Ψ (2.10)
shown for (a) t = 0, (b) t = π/2, (c) t = 1.58, (d) t = 1.95, (e) t = 2.1, (f ) t = 2.25.

dividing streamlines detach from the boundary. In highly symmetric geometries, the
original central eddy is annihilated by a single heteroclinic structure.

4. Perturbation analysis for small η and local solutions
In this section, we shall examine the low-frequency limit η � 1, and we shall for the

most part focus on the behaviour near any sharp corners on the boundary. Actually,
in a local analysis, the length scale of the domain L becomes irrelevant, and the corner
analysis is valid at distances r from the corner satisfying the inequalities (replacing
(2.7))

Û/ω̂ � r � ν/Û . (4.1)

We expand ψ̂ in a power series

ψ̂ = ψ̂0 + η ψ̂1 + η2 ψ̂2 + η3 ψ̂3 + . . . , (4.2)

substitute in (2.9) and equate terms with the same power of η; this yields the following
equations for the oscillating-lid and oscillating-cylinder problems:

Oscillating lid Oscillating cylinder

∇4ψ̂0 = 0 ψ̂0 ≡ 0

∇4ψ̂1 = i∇2ψ̂0, ∇4ψ̂1 = −i

∇4ψ̂2 = i∇2ψ̂1 ∇4ψ̂2 = i∇2ψ̂1,

...
...

∇4ψ̂n = i∇2ψ̂n−1, ∇4ψ̂n = i∇2ψ̂n−1.




(4.3)
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For the oscillating lid, this sequence begins with the homogeneous biharmonic
equation which has been extensively studied in the context of steady Stokes flow.
For the oscillating-cylinder problem, ψ̂0 ≡ 0 indicates that at the zeroth order the
fluid oscillates with the cylinder as a rigid body, i.e. the flow is identically zero in the
adopted non-inertial cylinder frame.

Note that for real forcing the successive amplitude functions ψ̂k , (k = 0, 1, 2, . . .)
are alternately real and pure imaginary. Consequently, the streamfunction Ψ takes
the form

Ψ = Re[ψ̂ eit ] = ψ0 cos t − η ψ̂1 sin t + · · · + η2k ψ̂2k cos t − η2k+1ψ̂2k+1 sin t + . . . .

(4.4)
In both cases the flow is quasi-steady at leading order and the (weak) inertial effects
due to the unsteady term are accounted for at the next order of approximation. This
higher-order term (O(η) in the oscillating-lid case and O(η2 ) in the oscillating-cylinder
case) becomes important near times tn when the trigonometric function (cos t or sin t

respectively) multiplying the leading-order term is close to zero. Consequently, for
most of the cycle the streamline topology is that of the leading-order term. However,
in each small time interval

�tn =
(
tn − 1

2
�t, tn + 1

2
�t

)
, �t = O(η), (4.5)

the higher-order correction is comparable in magnitude with the leading-order term.
In each such time interval

Ψ (x, y, t) ≈ (−1)nη2[ψ̂2 − τ ψ̂1], (4.6)

for the oscillating-cylinder case, and

Ψ (x, y, t) ≈ (−1)n+1η[ψ̂1 − τ ψ̂0], (4.7)

for the oscillating-lid case, where τ = ηt . This approximation is sufficient to describe
the reversal process as the scaled time τ runs through zero from large negative to
large positive values. In both situations the time scale of the flow reversal is O(η).

4.1. Time-periodic flow near a corner

We now investigate the asymptotic time-periodic flow structure near any sharp corner
on the boundary. As before, we assume that the flow is generated by oscillating some
part of the boundary (oscillating lid) or by oscillating the whole contour (oscillating
cylinder) and solve a related problem in a wedge. We may later constrain the solution
by imposing additional ‘remote’ boundary conditions. It is convenient here to consider
the two problems separately:

4.1.1. Oscillating lid

There are two kinds of corner flow in this case, that near a corner remote from the
moving lid, and that near a ‘lid corner’ where the boundary velocity is discontinuous.

(i) Remote corner. Based on (4.3) the zero-order solution for the oscillating-lid
problem requires solution of the biharmonic problem in the wedge

∇4ψ̂0(r, θ) = 0, ψ̂0 =
∂ψ̂0

∂θ
= 0 on θ = ±α. (4.8)

The general solution of (4.8) (Moffatt 1964) takes the form

ψ̂0 =

∞∑
n=1

Anfn(θ)rλn =

∞∑
n=1

(an Re[fn(θ)rλn] + bnIm[fn(θ)rλn]), (4.9)
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where

fn(θ) = cos(λn − 2)α cos λnθ − cos λnα cos(λn − 2)θ, (4.10)

and the (complex) constants An(= an − ibn) are determined (in principle) by the details
of the remote forcing. The eigenvalues are complex-conjugate pairs (λn, λ̄n), and may
be ordered so that

1 < Re[λ1] < Re[λ2] < · · · < Re[λn] < . . . . (4.11)

They are the roots (with Re[λ] > 1) of the transcendental equation

sin 2(λ − 1)α = −(λ − 1) sin 2α. (4.12)

At the first order, we seek the solution of the inhomogeneous biharmonic equation

∇4ψ̂1 = χ, ψ̂1 =
∂ψ̂1

∂θ
= 0, on θ = ±α, (4.13)

with

χ(r, θ) = i∇2ψ̂0 = 4i

∞∑
n=1

An(1 − λn) cos λnα cos(λn − 2)θ rλn−2. (4.14)

This takes the form

ψ̂1 = i

∞∑
n=1

(Cnfn(θ)rλn + Anhn(θ)rλn+2) = i

∞∑
n=1

(cnRe[fn(θ)rλn] + dnIm[fn(θ)rλn])

+ i

∞∑
n=1

(anRe[hn(θ)rλn+2] + bnIm[hn(θ)rλn+2]), (4.15)

where fn is given by (4.10) and the functions

hn(θ) =
cos λnα

8λn

[
λn sin 4α + 2 sin 2λnα

(λn + 1) sin 2α + sin 2(λn + 1)α
cos λnθ − cos(λn − 2)θ

]
(4.16)

arise from the ‘particular solution’ forced by the term χ in (4.13). Since as we have
noted, for real forcing, ψ̂0 is real, and ψ̂1 is pure imaginary, the coefficients an, bn, cn, dn

are all real and the real time-dependent streamfunction is therefore given by

Ψ (x, y, t) = Re[ψ̂ei t ] = ψ̂0 cos t − η ψ̂1 sin t + O(η2). (4.17)

Near r =0, ψ̂0 and ψ̂1 are in general dominated by the terms with n=1 which
involve the lowest powers of r; thus

ψ̂0 ∼ a1Re[f1(θ)rλ1 ] + b1Im[f1(θ)rλ1 ]

ψ̂1 ∼ ic1Re[f1(θ)rλ1 ] + id1Im[f1(θ)rλ1 ]

+ ia1Re[h1(θ)rλ1+2] + ib1Im[h1(θ)rλ1+2]


 as r → 0. (4.18)

For 2α � 146.2◦, Im[λ1] �= 0, and both these streamfunctions exhibit the familiar
phenomenon of infinitely oscillatory behaviour as r → 0 (Moffatt 1964). For 2α �
146.2, when λ1 is real, there are no corner eddies in the structure of Ψ . Hence, we
may conclude that, sufficiently near a sharp corner, there are two distinct regimes of
corner angles (see figure 10a) below where the local time-periodic flow has different
characteristics:

Regime I (0 < 2α � 146.2◦): there is an infinite sequence of (time-dependent) eddies
in the streamline pattern of Ψ throughout the time-periodic evolution.
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(a)  ψ̂0

(d)  ψ̂2

(b)  ψ̂1/i 

(c)  ψ̂1/i 

Figure 5. Structure of the functions ψ̂0 and ψ̂1/i in a corner closed by a circular arc r = 1 on
which the the boundary condition is satisfied by a least-squares collocation technique; (a, b)
oscillating-lid problem; (c, d) oscillating-cylinder problem.

Regime II (2α � 146.2): There are no corner eddies during most of the periodic
evolution, but during the flow reversal, there may be at most a single corner eddy
resulting from the competing structures of ψ̂0 and ψ̂1. The dividing streamline is
given by Ψ = 0 (as long as this connects to the walls).

In order to present some specific examples, we consider the situation when the flow
is driven by an oscillating lid at position r = 1. The coefficients an, bn, cn, dn (or at
any rate a finite number of them) may be determined using a collocation technique
(cf. Shankar 1993). This involves truncation of the series in (4.9), (4.15) to the first N

terms, choosing M( > 2N ) discrete points on the boundary r = 1, and determining 4N

coefficients in such a way that the boundary conditions on r = 1 are satisfied in a least-
squares sense at these points. For corner angle 2α =60◦ (regime I) and with N = 40 and
M = 200, this procedure yields a1 ≈ 0.1928, b1 ≈ 0.4056, c1 ≈ 0.001, d1 ≈ −0.0068
(see figure 5a, b). A sequence of snapshots of the resulting time-periodic flow (given
by (4.17)) is presented in figure 6 for η = 0.1. For this small value of η, the primary
corner eddy, visible in figure 6(a), remains almost steady for most of the period. Then,
in a very short time interval, it moves into the interior of the domain (its outermost
dividing streamline ultimately participates in the heteroclinic connection discussed in
the previous section). Simultaneously, another eddy, rotating in the opposite sense,
emerges from the corner to take the place of the primary eddy. This eddy will also
move into the interior after another half-period.

This behaviour is in a sense very beautiful! The infinite sequence of corner eddies
present in a steady Stokes flow are inaccessible to observation (after the first two or
three), because they decay so rapidly as the corner is approached. But when the flow
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Figure 6. Time-periodic evolution of the infinite eddy structure, characteristic of regime I,
near a 60◦ corner in a flow generated by an oscillating lid at r =1; η = 0.1 in this example.
The sequence of streamline patterns of Ψ (4.17) is shown during the short time interval within
which the flow reverses: (a) t = π/2 − 0.01, (b) t = π/2, (c) t = π/2 + 0.0011, (d) t = π/2 + 0.01.
The contours shown are not equidistant. The primary corner eddy which rotates in the opposite
sense to the main body of the fluid emerges from the corner, and simultaneously, the secondary
corner eddy replaces the primary one in the corner. Note that similar evolution takes place in
regime III of the oscillating-cylinder problem (see figure 10).

is oscillatory, at low frequency, it is as if these eddies were being coaxed out of the
corner one at a time, to participate in the successive flow-reversal processes in the
central part of the fluid domain.

Turning now to regime II (2α � 146.2), there are two possible scenarios: there may
be either a single eddy or no eddies generated during the flow reversal. Evolution
involving a single eddy is shown in figure 7 where 2α = 160◦ (so that Im[f1(θ)rλ1 ] ≡ 0).
Imposing the oscillating-lid conditions as before and using the least-squares technique
yields in this case a1 ≈ −1.0035, c1 ≈ 0.0155 (the coefficients bn and dn do not enter).
For most of the period there is no eddy in the corner, but a single dividing streamline
Ψ (x, y, t) = 0 emerges at some t > π. Finally, an example of evolution near a corner
of reflex angle 2α = 270◦, is shown in figure 8; here a1 ≈ −0.7920, c1 ≈ 0.0151. No
corner eddies appear in this situation during the flow reversal.

(ii) Lid corner. In this case, the zeroth-order problem reduces to

∇4ψ̂0(r, θ) = 0, ψ̂0(r, ±α) = 0,
1

r

∂ψ̂0

∂θ

∣∣∣∣
θ=α

= 1,
1

r

∂ψ̂0

∂θ

∣∣∣∣
θ=−α

= 0, (4.19)
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Figure 7. Emergence of a single eddy during the flow reversal in a 160◦ corner (regime
II) in the oscillating lid flow; Im(λ1) = 0 and there are no infinite eddy structures in the
flow. Similar evolution takes place in regime IV of the oscillating-cylinder problem (see
figure 10). Time sequence of instantaneous streamline patterns in a very short time interval
when the flow reverses its direction. (a) t = π/2, (b) t = π/2 + 0.00161, (c) t = π/2 + 0.00165,
(d) t = π/2+0.001665. The dividing streamline, determined by Ψ (x, y, t) = 0, eventually detaches
from the wall and becomes involved in a heteroclinic connection (not shown here).
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Figure 8. Flow evolution near a corner of a reflex angle 270◦ (regime II of the oscillating-lid
problem; regime IV of the oscillating-cylinder problem); this does not involve any eddies
during the reversal process. (a) t = π/2 + 0.0016, (b) t = π/2 + 0.0019, (c) t = π/2 + 0.0022,
(d) t = π/2 + 0.0025.
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which has a solution in the form

ψ̂0 =

∞∑
n=1

Anfn(θ)rλn + r

(
cos α (θ sin θ) − α sin α cos θ

sin 2α + 2α
+

sin α (θ cos θ) − α cos α sin θ

sin 2α − 2α

)
,

(4.20)

where the infinite sum, as in (4.9), represents the eigensolution of the homogeneous
problem and the particular solution (Goodier 1934; Taylor 1962) satisfies the
boundary conditions (4.19).

At the first order, the inhomogeneous problem reduces to

∇4ψ̂1(r, θ) = χ, ψ̂1 =
∂ψ̂1

∂θ
= 0, on θ = ±α, (4.21)

where

χ = 4i

∞∑
n=1

An(1−λn) cos λnα cos(λn −2)θ rλn−2 +
i

r

4α cos(θ − α) − 2 cos(θ + α) sin 2α

4α2 − sin2 2α
.

(4.22)

The solution of (4.21) can be written as

ψ̂1 = i

∞∑
n=1

(cnRe[fn(θ)rλn] + dnIm[fn(θ)rλn])

+ i

∞∑
n=1

(anRe[hn(θ)rλn+2] + bnIm[hn(θ)rλn+2]) + ir3z(θ), (4.23)

where

z(θ) = C1 cos θ + C2 sin θ + C3 sin 3θ + C4 cos 3θ

− 12(θ − α) cos(θ − α) − 12θ(cos(θ + 3α) + 4α sin(θ − α)) + 6 sin 2α cos(θ + α)

192(4α2 − sin2 2α)
,

(4.24)

and the coefficients C1, . . . , C4 are given by

C1 =
(8 cos4 α−12 cos2 α+3)α2+cos2 α sin 2α(3−4 cos2 α)α+3 cos2 α sin2 α cos 2α

32 cos2 α sin α(4α2−sin2 2α)
,

C2 =
(1 − 4 cos2 α cos 2α)α2 + sin2 α sin 2α(4 cos2 α − 1)α + 3 cos2 α sin2 α cos 2α

32 cosα sin2 α(4α2 − sin2 2α)
,

C3 =
1

128 cosα sin2 α
,

C4 =
1

128 cos2 α sin α
.




(4.25)

As in the remote-corner case, the coefficients an, bn, cn, dn in (4.20), (4.23) are all real
and the time-dependent streamfunction is again given by (4.17).

Near r = 0, ψ̂0 is always dominated by the driven component (since Re[λ1] > 1), so

ψ̂0 ∼ r

(
cos α(θ sin θ) − α sin α cos θ

sin 2α + 2α
+

sin α(θ cos θ) − α cosα sin θ

sin 2α − 2α

)
, (4.26)
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Figure 9. Emergence of a single eddy during flow reversal in a corner adjacent to the
oscillating lid when 2α � 126.5◦; in this example 2α = 90◦ and η = 0.1. (a) t = π/2 − 10−3,
(b) t = π/2, (c) t = π/2 + 10−5, (d) t = π/2 + 3 × 10−5, (e) t = π/2 + 3 × 10−3.

and the asymptotic behaviour of ψ̂1 is in general

ψ̂1 ∼ ic1Re[f1(θ)rλ1 ] + id1Im[f1(θ)rλ1 ]

+ ia1Re[h1(θ)rλ1+2] + ib1Im[h1(θ)rλ1+2] + ir3z(θ). (4.27)

Provided Re[λ1] > 3, i.e. for 2α � 126.5◦ (see figure 10a), both ψ̂0 and ψ̂1 are domi-
nated by the driven component. Consequently, at most a finite number of eddies
appears in the streamline pattern of Ψ (given by (4.17)) during the flow reversal and
disappears when the reversal is complete.

A sequence of snapshots of the resulting time-periodic flow in a corner of angle
2α = 90◦ is shown in figure 9 for η = 0.1. For most of the period, there are no eddies
in the corner and the flow structure has the well-known Taylor–Goodier similarity
form. As in the remote-corner situation, the flow reversal occurs within a very small
time interval (see (4.5)) when the two competing terms in Ψ become comparable in
magnitude. When the lid velocity reverses, a single eddy emerges from the corner and
rapidly expands along the accelerating lid. This growing eddy rotates in the opposite
sense to the base flow and (typically) merges with its counterpart generated in the
other corner adjacent to the lid, as shown for example in figure 4(c, d). The single
‘lid eddy’ created in this process is later involved in the generation of the heteroclinic
streamline (figure 4e) and flow reversal in the interior discussed in § 3.

Determination of the local flow structure when 2α � 126.5◦ is more subtle and we
defer a thorough analysis of this problem to a subsequent paper.

4.1.2. Oscillating cylinder

In this case the sequence starts from the first-order solution which, near a corner,
has the local form

ψ̂1 = i

∞∑
n=1

(anRe[fn(θ)rλn] + bnIm[fn(θ)rλn] ) + ig(θ)r4, (4.28)

where

g(θ) =
1

64

(
sin 2α cos 4θ − 2 sin 4α cos 2θ

sin 2α cos 4α − 2 sin 4α cos 2α
− 1

)
. (4.29)
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The first term in (4.28) is again a sum of eigensolutions of the biharmonic equation,
the (real) coefficients an, bn being determined in principle only when the global
geometry of the fluid domain is specified; the second term is the particular solution
of the inhomogeneous equation.

At the second order, ψ̂2 satisfies the inhomogeneous equation

∇4ψ̂2 = χ, ψ̂(r, ±α) =
∂ψ̂

∂θ

∣∣∣∣
θ=±α

= 0, (4.30)

where

χ(r, θ) = i∇2ψ1 = 4i

∞∑
n=1

An(1 − λn) cos λnα cos(λn − 2)θ rλn−2

− (3 cos 2θ − 4 cos 2α) sin 4α + 2 sin 2α cos 4α

8 sin 2α(1 + 2 cos2 2α)
r2. (4.31)

Consequently, the second-order solution ψ̂2 can be written as

ψ̂2 =

∞∑
n=1

(cnRe[fn(θ)rλn] + dnIm[fn(θ)rλn])

−
∞∑

n=1

( anRe[hn(θ)rλn+2] + bnIm[hn(θ)rλn+2]) + w(θ)r6, (4.32)

where fn(θ) and hn(θ) are given by (4.10) and (4.16), and

4608w(θ) = − cos 2α cos 6θ

8 cos4 2α − 3 cos 4α
− 6(cos 4α − 4 cos4 2α) cos 4θ

(2 cos2 2α + 1)(8 cos4 2α − 3 cos 4α)

− (9 cos 2θ − 8 cos 2α) cos 2α + 2 cos 4α

2 cos2 2α + 1
(4.33)

is the particular solution associated with the inhomogeneous term −∇2(g(θ)r4).
As previously noted, ψ̂1 is purely imaginary and ψ̂2 is real (and so therefore are

their asymptotic expansions near the corner). The real time-dependent streamfunction
Ψ (x, y, t) is therefore given by

Ψ (x, y, t) = Re[ψ̂ei t ] = −ηψ̂1 sin t + η2ψ̂2 cos t + O(η3). (4.34)

We note again here that if only the leading-order term is retained in (4.34), then
the evolution is quasi-steady, and it is the higher-order correction that reveals the
evolution of flow topology associated with the flow-reversal process. The time scale
of this process is again of order η.

Near r = 0, the dominant terms of (4.28) and (4.32) are

ψ̂1 ∼ ia1Re[f1(θ)rλ1 ] + ib1Im[f1(θ)rλ1 ] + ig(θ)r4 as r → 0,

ψ̂2 ∼ c1Re[f1(θ)rλ1 ] + d1Im[f1(θ)rλ1 ]

− a1Re[h1(θ)rλ1+2] − b1Im[h1(θ)rλ1+2] + w(θ)r6 as r → 0.


 (4.35)

As for the lid-corner case, there is here a competition between the driven compo-
nents and the eigen-components in the two solutions. If the eigen-component
dominates sufficiently near the corner and if Im[λ1] �= 0, then there will be an infinite
sequence of eddies in the structure. If, on the other hand, the driven component
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Figure 10. Real parts of λ1, λ2, λ3, . . . (see (4.12)) and different dynamical regimes of local
flow near a sharp corner as a function of the corner angle 2α. (a) Oscillating-lid case (flow
given by (4.17)): regime I – there is infinite sequence of time-dependent corner eddies in the
flow throughout the time-periodic evolution; regime II – there is (at most) one eddy generated
during flow reversal. (b) Oscillating-cylinder case (flow given by (4.34)): regimes III (solid) and
IV (dashed) characterized as, respectively, I and II in (a) above; regime II (dash-dotted) – an
infinite sequence of eddies is present at some stage of the reversal process (it must disappear
at least for t = 1

2
π(2k + 1)); regime I (dotted) – at most a finite number of time-dependent

eddies appear at some stage of the reversal process.

dominates near the corner, there can be at most a finite sequence of eddies in any
neighbourhood of the corner. From (4.35), it is evident that ψ̂1 contains such an
infinite sequence provided Re[λ1] < 4, Im[λ1] �= 0, i.e. provided 81.9◦ � 2α � 146.2◦,
and similarly that ψ̂2 contains such a sequence provided Re[λ1] < 6, Im[λ1] �= 0, which
corresponds to 48.7◦ � 2α � 146.2◦. Combining this information about ψ1 and ψ2 to
determine the flow structure given by Ψ , we obtain four distinct regimes of corner
angles characterized by different topological evolution (see figure 10b):

Regime I (2α � 48.7◦): there may be at most a finite number of eddies in the
corner. Both ψ̂1 and ψ̂2 are dominated by the driven component.

Regime II (48.7◦ � 2α � 81.9◦): an infinite structure of time-dependent eddies
appears during the flow reversal and disappears when the reversal is complete. In this
regime, ψ̂2 is dominated by the eigen-component and contains the infinite structure
of eddies but ψ̂1 is dominated by the driven component.

Regime III (81.9◦ � 2α � 146.2◦): an infinite structure of time-dependent eddies is
present throughout the whole time-periodic evolution. Both ψ̂1 and ψ̂2 are dominated
by the eigen-component (just as for the oscillating-lid situation).

Regime IV (2α � 146.2◦): at most one single eddy appears during the flow reversal.
In this regime, λ1 is real, so neither ψ̂1 nor ψ̂2 contains an infinite eddy sequence.

The local flow structure in regimes III and IV, when the corner flow is dominated by
the eigen-component, is basically the same as in the oscillating-lid case (figures 6–8).
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Figure 11. Initial stage of flow reversal in an oscillating cylinder near a sharp corner
representative of regime II (see text); 2α = 60◦, η = 0.1 in this example. The sequence
of snapshots of instantaneous streamline patterns of Ψ (4.34) illustrates crucial stages
of the time-periodic evolution in the non-inertial frame oscillating with the cylinder:
(a) t = π − 0.00018, (b) t = π − 0.00015, (c) t = π − 0.0001457, (d) t = π − 0.00014,
(e) t = π − 0.000024, (f ) t = π − 0.000026. Such pairs of sidewall eddies are also involved
in the flow reversal in corner angles from regime I but, in contrast to the situation in regime
II, they are only finite in number.

Note that the structure of the local flow in the square, presented in figure 1, belongs
to regime III.

In order to illustrate the flow evolution in regimes I and II, we close the domain
with a circular arc at r = 1 and impose the no-slip conditions on the boundary. As in
the oscillating-lid problem, we again use the least-squares technique to determine the
first 20 coefficients an, bn, cn, dn. A sequence of snapshots of instantaneous streamline
patterns of Ψ given by (4.34) is shown in figure 11 (see also figure 5c, d) for 2α = 60◦

and η =0.1 (a1 ≈ 228 × 10−5, b1 ≈ −1.4 × 10−5, c1 ≈ 7.7 × 10−5, d1 ≈ −0.01 × 10−5).
Based on the above analysis, we know that in this case an infinite sequence of counter-
rotating eddies must appear in the flow during the reversal process. This is achieved
by the emergence of sidewall eddies that rotate in the opposite sense to the main body
of the fluid. These eddies later merge into one oppositely rotating eddy (figure 11c)
and the two dividing streamlines created in such a process begin to travel in opposite
directions (figure 11d). At this stage the infinite structure of time-dependent corner
eddies exists in the flow. This structure is then destroyed by the reverse process. As
shown by figure 11(d), pairs of dividing streamlines created in similar events nearer
the corner approach each other and later divide the eddy into pairs of sidewall eddies
which are annihilated at the walls. Note here that the local flow near the 60◦ corner
in figure 3 belongs to regime II, although only one pair of emerging sidewall eddies
is visible in the global picture.

The sidewall eddies are also responsible for initiation of the flow reversal in corners
in regime I but in this case only a finite number of such pairs is created as opposed
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to the infinite sequence being generated in the regime II case. Note here that the
example of flow reversal shown in figure 2, where such sidewall eddies appear in the
acute-angle corners (2α = π/4), represents evolution that is characteristic of regime I
and therefore involves a finite number of eddies. In the obtuse angles of the rhombus
(2α = 135◦) (regime III) an infinite sequence of eddies must be present throughout
the cycle, but these are too small to be observed on the scale of figure 2.

5. The high-η limit for the oscillating-cylinder problem
Computations indicate that the qualitative character of the flow reversal changes

when η is increased beyond about 200. Here we simply analyse the asymptotic
behaviour for the oscillating-cylinder problem when the oscillation frequency is large,
η � 1. (The oscillating-lid problem may be similarly treated.) We anticipate that a
boundary layer of thickness O(η−1/2) will form on the inner side of ∂D. Let (s, n) be
tangential and normal coordinates on ∂D, with n pointing inwards. The boundary
layer then occupies the region n ∼ O(η−1/2), and we may refer to the interior region
n � η−1/2 as the ‘core’. In the core, viscous effects are negligible, and at leading order
(from (2.9)) the core streamfunction ψ̂0(x, y) satisfies

∇2ψ̂0 = 1. (5.1)

This represents an inviscid flow of uniform vorticity −1, on which we can impose
only the single boundary condition

ψ̂0 = 0 on ∂D. (5.2)

The solution ψ̂0(x, y) of (5.1), (5.2) is uniquely determined and real. Relative to the
inertial (laboratory) frame of reference, this flow is irrotational. It is of historic interest
to note that the problem (5.1), (5.2) was in fact solved for a rectangular domain in
terms of Fourier series by Stokes (1843), two years before his famous derivation of
the Navier–Stokes equations.

Of course, ψ̂0(x, y) does not satisfy the no-slip condition ∂ψ̂/∂n= 0 on ∂D, and
this is why a boundary layer is needed. The ‘slip’ velocity at the inner edge of this
boundary layer is

V̂ (s) =
∂ψ̂0

∂n

∣∣∣∣
∂D

= η1/2 ∂ψ̂0

∂ñ

∣∣∣∣
∂D

, (5.3)

where ñ= η1/2n. In the layer, ∇2 = η−1∂2/∂ñ2, and the tangential velocity component
v̂(s, ñ)( = ∂ψ̂/∂ñ) satisfies

iv̂ = iV̂ (s) +
∂2v̂

∂ñ2
(5.4)

where the term iV̂ (s) represents the tangential pressure gradient imposed on the
boundary layer by the core flow. The relevant boundary conditions are

v̂(s, ñ) = 0 on ñ = 0,

v̂(s, ñ) ∼ V̂ (s) as ñ → ∞,

}
(5.5)

and the solution (an oscillating Stokes layer) is

v̂(s, ñ) = V̂ (s)
(
1 − e−(1+i)ñ/2

)
. (5.6)

The flux in this layer relative to the core slip velocity is

Q̂ = −
∫ ∞

0

V̂ (s)e−(1+i)ñ/2 dn = −(1 − i)V̂ (s). (5.7)
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Incompressibility then requires that there is a normal component of velocity Û from
the boundary layer to the core given by

Û = −dQ̂

ds
= (1 − i)

dV̂

ds
(5.8)

(an effect akin to Ekman suction). This drives a correction η−1/2ψ̂1(x, y) to the core
flow given by

∇2ψ̂1 = 0 (5.9)

with the boundary condition

∂ψ̂1

∂s
= −Û (s) = −(1 − i)

dV̂

ds
on ∂D, (5.10)

or equivalently

ψ̂1 = −(1 − i)V̂ (s) on ∂D. (5.11)

The solution to (5.9), (5.11) is uniquely determined, and we now have the solution to
(2.9) in the form

ψ̂(x, y) = ψ̂0(x, y) + η−1/2ψ̂1(x, y) + O(η−1), (5.12)

where the O(η−1) term could in principle be found by an iterative technique. Since
V̂ (s) is real, it is evident that

ψ̂1 = (1 − i)ψ̂1r (x, y) (5.13)

where ψ̂1r is real, and from (2.10) we then have Ψ in the form

Ψ =
(
ψ̂0 + η−1/2ψ̂1r

)
cos t + η−1/2ψ̂1r sin t + O(η−1). (5.14)

Just as for the low-η situation, the correction here is out of phase with the leading-
order solution. This yields a smooth change of topology associated with the reversal
of the core flow.

The leading-order solution ψ̂0 cos t vanishes when tn =(n + 1
2
)π (n= 0, ±1, ±2, . . .).

For most of the cycle, the streamline topology is just that of ψ̂0(x, y). However, in
each small time interval

�tn =
(
tn − 1

2
�t, tn + 1

2
�t), �t = O

(
η−1/2

)
, (5.15)

the out-of-phase correction η−1/2ψ̂1r sin t is comparable in magnitude with ψ̂0 cos t .
During each such time interval

Ψ (x, y, t) ≈ (−1)nη−1/2[ψ̂1r (x, y) − τ ψ̂0(x, y)] (5.16)

where τ = η1/2t . As for the low-η situation, this approximation is sufficient to describe
the flow reversal as the scaled time increases through zero from large negative to
large positive values.

5.1. Flow near a corner

Here, the solution of (5.1), (5.2) consists of the particular integral

ψ̂0P = 1
4
r2

(
1 − cos 2θ

cos 2α

)
, (5.17)
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and the complementary function

ψ̂0C = Arπ/2α cos
πθ

2α
. (5.18)

The term on the right-hand side of (5.17) dominates near r = 0 if 2α < π/2, while the
term on the right-hand side of (5.18) dominates if 2α > π/2 (the implications of this
distinction have been noted in a different context by Moffatt &Duffy 1980). Let us
consider these cases separately.

(i) Flow near an acute-angle corner (2α < π/2). Here ψ̂ ∼ ψ̂0P near r = 0, so

V̂ (r) =
1

r

∂ψ̂0P

∂θ
= − 1

2
r tan 2α on θ = ±α. (5.19)

Hence, the boundary conditions for ψ̂1 are

ψ̂1 = 1
2
(1 − i)r tan 2α on θ = ±α. (5.20)

The relevant solution of ∇2ψ̂1 = 0 is therefore

ψ̂1 = 1
2
(1 − i)

tan 2α

cosα
r cos θ = (1 − i)

sin α

cos 2α
r cos θ. (5.21)

The composite solution for ψ̂ is thus

ψ̂ = 1
4
r2

(
1 − cos 2θ

cos 2α

)
+ η−1/2(1 − i)

sin α

cos 2α
r cos θ + O(η−1 ). (5.22)

This description is valid only if η−1/2r � r2, i.e. r � η−1/2, so that the first term is
indeed dominant; the description holds in the range of intermediate asymptotics
(Barenblatt 1996)

η−1/2 � r � 1, (5.23)

the second part of this inequality meaning simply that we are in a corner region
on a scale small compared with that of the whole domain D. The first part of
the inequality is to be expected, because the boundary layers on θ = ±α overlap
in the region r = O(η−1/2 ) and the simple boundary-layer description is no longer
valid; indeed, for r � η−1/2, we revert to the viscosity-dominated regime where the
oscillations characteristic of the Stokes-layer velocity profiles give way to the radial
oscillations associated with corner eddies.

From (5.16), we find that at an intermediate distance from the corner the flow
reversal during the time interval �tn is approximately given by

Ψ (x, y, τ ) ≈ (−1)nη−1/2

[
sin α

cos 2α
r cos θ − τ

r2

4

(
1 − cos 2θ

cos 2α

)]
. (5.24)

This reversal process in the core region is described by the sequence shown in figure 12.
For τ < 0, a saddle point located at r ∼ O(−1/τ ), θ = 0 propagates from the origin
towards large r; for τ > 0, the streamline shape gradually recovers to that of the
zero-order solution. Of course the intersection of the streamlines with the boundary
is only apparent; in reality they adjust to become parallel to the boundary (and
to satisfy the no-slip condition) within the boundary layer. The saddle point which
propagates from the origin in this approximation is in fact created in the boundary
layer when the emerging corner eddy is consumed by the two expanding ‘wall eddies’
(compare with figure 14c, d)
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Figure 12. Sketch of flow reversal in a corner for 2α < π/2 in the high-η limit based on
the (approximate) solution (5.24); 2α = 60◦ in this example. This description is valid only for
η−1/2 � r � 1 and outside boundary layers on θ = ±α.

(ii) Flow near an obtuse-angle corner (2α > π/2). In this case, near r =0, we obtain

ψ̂ ∼ ψ̂0C = Arπ/2α cos
πθ

2α
, (5.25)

where A is a constant (which we may suppose real by choice of time origin) determined
in principle by the global geometry of the domain D. It follows by the same procedure
as before that the composite solution for ψ̂ is

ψ̂ = Arπ/2α

(
cos

πθ

2α
− η−1/2(1 − i)

π

2αr

cos(π/2α − 1)θ

cos(π/2α − 1)α

)
+ O(η−1 ), (5.26)

and, at the intermediate distance from the corner, the flow reversal during �tn is
described by

Ψ (x, y, τ ) ≈ (−1)n+1η−1/2Arπ/2α

[
π

2αr

cos(π/2α − 1)θ

cos(π/2α − 1)α
+ τ cos

πθ

2α

]
. (5.27)

Here, the first term actually gives a singular velocity at r =0; but again the description
is valid only for r � η−1/2. Nevertheless the reversal, originating as it does from the
neighbourhood of the origin due to the viscous process discussed in § 4, has a more
explosive character in this case. The corresponding reversal process in the core region
is described by the sequence shown in figure 13.

5.2. Flow reversal in a square domain, η � 1

Consider now an example of a flow reversal inside a square domain at large η. An
appropriate global solution of (2.9), (2.10) (with Λ = 1) can be determined using
either the analytical method (A 1)–(A 6) described in Appendix, or by means of a
finite-difference algorithm.
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Figure 13. Sketch of flow reversal in the core region of a corner for 2α > π/2 in the high-η
limit based on the (approximate) solution (5.27); 2α = 120◦ in this example. This description
is valid only for η−1/2 � r � 1 and outside boundary layers on θ = ±α.

Figure 14 presents the time-periodic evolution of the flow as a sequence of snapshots
of instantaneous streamline patterns of the streamfunction Ψ (x, y, t), given by (2.10),
for η =2000. As for the low-η regime (figure 1), four eddies emerge from the corners
at the onset of the flow reversal. These counter-rotate relative to the central eddy
(dashed lines). As discussed in the previous sections, even in the high-η situation
the flow structure very near the corner (r ∼ O(η−1/2 )) is described by (4.28), (4.32)
and (4.34) with 2α = π/2 (regime III). At the intermediate distance from the corner
(η−1/2 � r � 1), the behaviour involves both ψ̂0C and ψ̂0P , given by (5.18) and (5.17),
which have the same order of magnitude. As shown by Moffatt &Duffy (1980),
in the particular situation of the right-angle corner, a compromise is achieved for
which the streamfunction is O(r2 ln r) as r → 0. However, in contrast to the low-η
situation, the primary corner eddies do not expand into the interior in this case but
merge together with the four ‘wall eddies’ (figure 14b, c, d) in the Stokes boundary
layers which dominate the flow structure near the boundary (figure 14d–h). The
centres of these eddies move very little during the subsequent stage of flow reversal.
Eventually, the central eddy is consumed (figure 14f ) and the fluid in the interior
subsequently rotates in the same sense as the boundary (figure 14g, h, i).

Note that this mechanism is different from that identified in the low-η regime where
the emerging corner eddies played a primary role in the flow-reversal process in the
interior. In the more complex high-η evolution, the corner eddies serve to generate
the wall eddies which are then involved in the sequence of global bifurcations of a
single heteroclinic orbit that leads to the flow reversal.

In less symmetric domains, which we have also investigated, the reversal mechanism
becomes much more complicated, since highly symmetric bifurcations like those
revealed in figure 14 are no longer possible. Instead, a number of distinct heteroclinic
(and/or homoclinic) connections are created when the dividing streamlines of
emerging corner eddies detach from the boundary. These structures are later involved
in a series of global bifurcations, leading eventually to the disappearance of the central
eddy and reversal of the flow. We conjecture that, regardless of the actual geometry,
the generation of the Stokes boundary layer and the dominant role of the wall eddies
are common features of the flow-reversal process at large η.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 14. Flow reversal inside an oscillating square domain at large η (non-inertial frame
oscillating with the cylinder used): sequence of snapshots showing instantaneous streamline
patterns at different stages of time-periodic evolution with η = 2000: (a) t = 0.65, (b) t = 0.9,
(c) t =1.2, (d) t = 1.5, (e) t = 1.56, (f ) t = π/2, (g) t = 1.572, (h) t = 1.59, (i) t =1.65. Note that
in contrast to the flow reversal at smaller η (figure 1) the corner eddies blend into Stokes layers
and associated wall eddies which develop near the boundary; the flow reversal in the interior
is realized through a series of global bifurcations involving these wall eddies rather than the
primary corner eddies.

6. Conclusions
We have analysed the time-periodic evolution of Stokes flows in a bounded domain,

forced either by tangential oscillation of part of the boundary, or by torsional
oscillation of the whole domain. The time lag between the motion of the boundary
and the response of the contained fluid is captured by retaining the local acceleration
term in the governing dynamical equation. This permits a description of the manner
in which the internal flow reverses during each half-period of the cycle.
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We have focused attention on the behaviour near any sharp corner that may be
present on the domain boundary. Depending on the angle of the corner, and on the
nature of the forcing, an infinite sequence of corner eddies may be present either
during the whole cycle, or just during the reversal process. Eddies originating in
the corner region eventually participate in the global flow-reversal process. We have
described the topological transitions that occur in the streamline pattern for a variety
of domains, and have sought to explain the origin of these transitions through local
corner analysis.

We have presented an asymptotic analysis for both small and large values of the
dimensionless frequency parameter η. In both situations, the changes of flow topology
associated with flow reversal occur during a small time interval centred on the phase
of the periodic cycle when the leading-order term vanishes. At low η, this leading-
order term is the ‘quasi-static’ solution of the biharmonic equation with appropriate
boundary conditions. At large η, it is (in the oscillating-domain case) the quasi-static
potential flow driven by the normal component of velocity at the boundary; in this
case, an oscillatory Stokes boundary layer is needed to accommodate the no-slip
condition, and there is an interesting interaction between the corner eddies and this
boundary layer as the reversal process develops.

This study opens up an interesting range of problems that deserve further study.
First, if corners are rounded off, so that the boundary is everywhere analytic, it
is to be expected that a finite sequence of eddies may still form in regions near
points of maximum curvature on the boundary. It would be interesting to develop
a numerical technique for the solution of the oscillating-cylinder problem for an
arbitrary smooth boundary. The changing character of the flow as η increases from
small to large values would be of special interest, and particularly the question of
whether, and in what circumstances, separation of the Stokes boundary layer may
occur at large η. Transient behaviour due to the sudden application of boundary
forcing also merits study. The analysis could be extended in a straightforward
way to fully three-dimensional domains, for which a rich tapestry of topological
transitions in time-periodic flow may be anticipated. It should be possible to include
nonlinear inertia, and to investigate numerically the effect of increasing Reynolds
number for this class of internal flows. Finally, mixing properties of the time-
periodic flows discussed in this paper can be studied; a paper on this aspect is in
preparation.

M.B. is supported by a scholarship from the Gates Cambridge Trust. H. K. M. ack-
nowledges the support of a Leverhulme Emeritus Professorship.

Appendix. Outline of analytical procedure used for rectangular domain

The elliptic problem (2.9) for the amplitude function ψ̂ can be solved by the
superposition method (see Mathieu 1881 or Timoshenko & Goodier 1970). This
method has been used by Meleshko (1996) for analysis of Stokes flow in a rectangular
cavity driven by steady motion of a lid.

Here, we use the method to find ψ̂ for the oscillating-cylinder problem given by
(2.9) with Λ = 1 when the cross-section is a rectangle with sides |x| =1 and |y| =h.
First let

ψ̂ = 1
2
h X +

(
1 − 1

2
h
)

Y + ξ (x, y) (A 1)
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where

X =
cosh 1

2

√
iη − cosh

√
iη x

2
√

iη sinh 1
2

√
iη

+ 1
2

(
x2 − 1

4

)
,

Y = h
cosh 1

2
h

√
iη − cosh

√
iη y

2
√

iη sinh h
2

√
iη

+ 1
2

(
y2 − 1

4
h2

)




(A 2)

are even in x and y respectively. Then ξ satisfies the equation

∇2ξ − (iη)−1∇4ξ = 0, (A 3)

and the boundary conditions

ξ
(
x, y = ± 1

2
h
)

= − 1
2
hX,

∂ξ

∂y

∣∣∣∣
y=±h/2

= 0, (A 4)

ξ
(
x = ± 1

2
, y

)
= −

(
1 − 1

2
h
)
Y,

∂ξ

∂x

∣∣∣∣
x=±1/2

= 0. (A 5)

We now expand ξ as the sum of two Fourier series

ξ = ξ0 + h

∞∑
m=1

(−1)m
Xm

α2
m

pm(y) cos αmx +

∞∑
l=1

(−1)l
Yl

β2
l

ql(x) cos βly (A 6)

where αm = 2πm, βl = 2πl/h, and

pm(y) =

√
α2

m + iη sinh 1
2
h
√

α2
m + iη coshαmy − αm sinh 1

2
hαm cosh

√
α2

m + iη y√
α2

m + iη sinh 1
2
h
√

α2
m + iη cosh 1

2
hαm − αm sinh 1

2
hαm cosh 1

2
h
√

α2
m + iη

(A 7)

ql(x) =

√
β2

l + iη sinh 1
2

√
β2

l + iη coshβlx − βl sinh 1
2
βl cosh

√
β2

l + iη x

√
β2

l + iη sinh 1
2

√
β2

l + iη cosh 1
2
βl − βl sinh 1

2
βl cosh 1

2

√
β2

l + iη
. (A 8)

The functions pm(y) and ql(x) satisfy boundary conditions

pm

(
y = ± 1

2
h
)

= 1,
dpm

dy

∣∣∣∣
y=±h/2

= 0, (A 9)

ql

(
x = ± 1

2

)
= 1,

dql

dx

∣∣∣∣
x=±1/2

= 0. (A 10)

In this representation ξ satisfies the governing equation (A 3) inside the domain.
Moreover, the first Fourier series in (A 6) can represent any even function
corresponding to the boundary conditions imposed on ξ on the sides |y| =h

(ξ (x, ±h/2) = ∓hX(x)/2), and the second Fourier series can represent any even
function corresponding to the boundary conditions imposed on ξ on the sides |x| =1
(ξ (±1/2, y) = ∓Y(y)/2). The boundary condition on the normal derivative ∂ξ/∂n = 0
on the sides is satisfied identically by the above choice of pm(y), ql(x) and αm, βl . Note
that pm and ql decrease rapidly with distance from the boundary. Thus, the influence
of the higher-order terms in (A 6) is confined to an increasingly narrow band along
the boundary, so any small variation of the high-order coefficients has a negligible
effect on the solution well inside the domain.
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Imposing the remaining boundary conditions on ξ on the appropriate edges leads
to

ξ0 + h

∞∑
m=1

(−1)m
Xm

α2
m

cos αmx +

∞∑
l=1

Yl

β2
l

ql(x) = − 1
2
hX(x), (A 11)

ξ0 + h

∞∑
m=1

Xm

α2
m

pm(y) +

∞∑
l=1

(−1)l
Yl

β2
l

cos βly = −
(
1 − 1

2
h
)
Y(y). (A 12)

Standard Fourier inversion then yields an infinite system for the coefficients Xm and
Yl which can be written as

Xm +

∞∑
l=1

Yl q̂ lm = X̂m, m = 1, 2, . . . ,

Yl +

∞∑
m=1

Xmp̂ml = Ŷl , l = 1, 2, . . . ,




(A 13)

and

ξ0 = Ŷ0 −
∞∑

m=1

Xmp̂m0 = X̂0 −
∞∑

l=1

Yl q̂ l0, (A 14)

where

p̂m0 =
2 iη

α3
m

√
α2

m + iη
[√

α2
m + iη coth 1

2
hαm − αm coth 1

2
h
√

α2
m + iη

] , (A 15)

p̂ ml =
4β2

l iη
√

α2
m + iη

αm

(
α2

m + β2
l

)(
α2

m + β2
l + iη

)[√
α2

m + iη coth 1
2
hαm − αm coth 1

2
h
√

α2
m + iη

] ,

(A 16)

q̂ lm =
4α2

miη
√

β2
l + iη

h βl

(
α2

m + β2
l

)(
α2

m + β2
l + iη

)[√
β2

l + iη coth 1
2
βl − βl coth 1

2

√
β2

l + iη
] ,

(A 17)

X̂m = −
1
2
h 2iη

h
(
α2

m + iη
) for m = 1, 2, . . . , (A 18)

Ŷ0 = −
1 − 1

2
h

12iη

(
6h

√
iη coth 1

2
h
√

iη − h2iη − 12
)
, (A 19)

Ŷl =

(
1 − 1

2
h
)
2iη

β2
l + iη

for l = 1, 2, . . . . (A 20)

We now solve the system (A 13) by the standard method of reduction; we truncate
the system (A 13) to M and L terms respectively and solve for coefficients Xm and Yl .
As shown by Kantorovich & Krylov (1958), as the level of truncation is increased,
the solution converges to the true solution for ‘fully regular’ systems, i.e. (in this case)

∞∑
l=1

|q̂lm| � δ < 1 for m = 1, 2, . . . ,

∞∑
m=1

|p̂ml | � δ < 1 for l = 1, 2, . . . , (A 21)
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Figure 15. Oscillating-cylinder problem. (a, b) Numerically calculated partial sums Σl(M)
(A 22) for the case of square geometry (h = 1; Xm = Ym) and two different values of η:
(a) η = 1, (b) η = 100; l = 1, 2, 100, 300, 600, 1000 in both cases. (c, d) First 1000 complex
coefficients obtained by the method of reduction of the infinite system (A13) for (c) η =1 and
(d) η = 100. In both cases the coefficients initially decrease rapidly with m. The decay becomes
significantly slower with increasing m.

provided the positive constant δ exists and the free terms X̂m, Ŷl in (A 13) are
bounded. Moreover, increasing M and L does not significantly affect the coefficients
with small indices.

Figure 15 provides strong evidence for the regularity of the system under
consideration. It shows the behaviour of the partial sum

Σl(M) =

M∑
m=1

|p̂ml |, (A 22)

for the case of a square domain, and it is evident that relations (A 21) are indeed
satisfied in this case. Similar results (not presented here) have been obtained for a
rectangular domain (h �= 1). We conjecture on the basis of these numerical results
that the system (A 13) is indeed fully regular.

Figure 16 shows a comparison between the amplitude function ψ̂(x, y), given by
(A 1), near a corner obtained for different number (M + L) of the unknowns Xm, Yl

in the the truncated system (A 13) and the same amplitude calculated numerically
using finite differences; results are presented for two values of η. The fourth-order
finite-difference algorithm is similar to that described by Stephenson (1984) and uses
a compact nine-point stencil that allows more accurate implementation of the no-
slip boundary conditions. The accuracy of the semi-analytical method decreases with
decreasing dimension of the truncated system but the location of the primary dividing
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Figure 16. Comparison of two different techniques used to calculate the complex amplitude
ψ̂ in a square domain for the oscillating cylinder problem with: (a–c) η = 1, (d–f ) η = 100.
Results are shown for Re[ψ̂] near one of the corners on the domain where the superposition
method is least accurate. The numerical (fourth-order finite-difference) solution was computed
on a 400 × 400 grid and the semi-analytical solution was obtained from the truncated system
(A13) for M + L unknowns Xm and Yl .

streamline is well-determined even for a relatively small number of terms used in the
reduction method. In the interior, these two methods are in very good agreement even
for a small number of terms used in the expansion (A 1).

The solution for ψ̂ in the oscillating lid case (Λ = 0) can be obtained in a similar
way and we do not present details of this procedure here. If the oscillating lid is
located at y = h/2, the streamfunction has to be split into the sum

ψ̂ = ψ̂s(x, y) + ψ̂a(x, y) (A 23)

of even (ψ̂s) and odd (ψ̂a) functions in y, and these two subproblems are then solved
independently (due to the linearity of (2.9)). It can be checked numerically, as for the
oscillating-cylinder problem (figure 15), that the two resulting infinite systems for the
unknown coefficients are also fully regular in this case. However, convergence of the re-
duction method is much slower in this situation due to the discontinuity of the
tangential velocity profile on the boundary.

The above treatment is sufficient for the purposes of investigating global
characteristics of the flow reversal in a rectangle and is superior to the purely
numerical finite-difference method in terms of both computational time and the
insight provided into the structure of the solution. However, greater care is needed
in order to accurately resolve the structure of the solution in the corners beyond the
primary corner eddies. In particular, the possibility that the unknowns Xm, Yl tend to
some constant non-zero value would then require more careful consideration.
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